
MATHEMATICS OF COMPUTATION
VOLUME 43, NUMBER 167
JULY 1984, PAGES 289-311

A Monte Carlo Factoring Algorithm
With Linear Storage

By C. P. Schnorr* and H. W. Lenstra, Jr.

Abstract. We present an algorithm which will factor an integer n quite efficiently if the class
number h (- n) is free of large prime divisors. The running time T(n) (number of composi-
tions in the class group) satisfies prob[T(m) < n1/2,] > (r - 2)-(r-2) for random m E
[n/2, n] and r > 2. So far it is unpredictable which numbers will be factored fast. Running
the algorithm on all discriminants - ns with s < rr and r = /ln n/ln ln n, every composite
integer n will be factored in o(exp lnnn lnIln n) bit operations. The method requires an
amount of storage space which is proportional to the length of the input n. In our analysis we
assume a lower bound on the frequency of class numbers h (-), m < n, which are free of
large prime divisors.

1. Introduction. The problem of factoring an integer n into its prime power
divisors is computationally equivalent to determining all ambiguous, reduced posi-
tive forms ax2 + bxy + cy2 (notation (a, b, c)), a, b, c E Z, with discriminant b2 2

4ac = - n (b2 - 4ac = + n, resp.). In fact these ambiguous forms correspond to the
relatively prime factorizations of n, i.e. to the pairs (nl, n2) with n = nln2,

gcd(nl, n2) = 1.

According to Gauss [5] the equivalence classes of forms with fixed discriminant A
form a group under composition, the class group G(A). The order h(A) of this group
is the class number. Multiplication in G(A) can be done efficiently working with
representatives of classes. The ambiguous classes are the classes H with H2 = 1.

In case of negative discriminant A < 0 there is a unique reduced form in each
class, and this form can be efficiently calculated from any other class representative.
Therefore, factoring n is computationally equivalent to determining representatives
of all ambiguous classes in G(- n). The reduced forms of these classes correspond to
the relatively prime factorizations nln2 = n of n.

In case of positive discriminants A > 0, under a different concept of reduction,
there are O(VA ln A) reduced forms in each class. They form a cycle under the
reduction operation. Composition of forms yields a group-like structure on the
principal cycle. A reduced form (a, b, c) is ambiguous if its square under composi-
tion yields the unit form. Again, the ambiguous, reduced forms with discriminant
n > 0 correspond to the relatively prime factorizations nln2 = n of n.

Several factoring algorithms have been developed on this basis. Here we are only
concerned with negative discriminants. For positive discriminants, see the algorithms
of Shanks as described in Monier [11] and Wagstaff-Wunderlich [221. For negative

Received March 21, 1983.
1980 Mathematics Subject Classification. Primary 1OA30, 10C07, 68C25.
*Research supported by Bundesminister fur Forschung und Technologie under grant 08 30108.

?1984 American Mathematical Society
0025-5718/84 $1.00 + $.25 per page

289

290 C. P. SCHNORR AND H. W. LENSTRA, JR.

discriminants Shanks [17], after guessing generators for G(-n), computes the class
number h (- n) by exploiting the group structure. Then Shanks computes
H(k):= Hh(-n)/2 for the smallest k such that H(k) # 1 with H E G(-n) chosen
arbitrarily. Clearly H(k) is ambiguous. Under reasonable assumptions it takes
0(nl/4) steps to factor n in this way. This method can be speeded up to an
0(n1/5)-algorithm by approximating h(- n) via the class formula (let (p) denote the
Kronecker symbol):

lim -n H p h(= n)
m 'iT - p

which by the generalized Riemann hypothesis has an error term O(ln(mn)n1/2m - 1/2).

For this algorithm the amount of storage will be proportional to the running time.
In Schnorr [19] a method was proposed to generate ambiguous forms which is

similar to the Morrison-Brillhart factoring algorithm. We collect equations

Hi2 =npPi ai .Z,
p

with Hi E G(- n) chosen at random and Hp = [(p, bp, cp)] for small primes p. By
combining these equations one obtains

H = HHhL F = IHHIhiaP.i)/2
i P

such that H2 = F2, H # F. Then HF-1 is ambiguous. Under reasonable assump-
tions n will be factored with o(exp 4 ln n ln ln n) steps and o(expl, ln n In ln n)
storage.

The new algorithm, given the first t primes Pi = 2, P2 = 3,...,p, nl/2r, needs
only to store a fixed number of forms which takes O(log n) bits. Let ei = max{ v:
pi" < pt }. Then Stage 1 of the new algorithm computes

H rHlf=2PP'

for an arbitrarily chosen Ho E G(-n). Then compute H2k for the smallest k s
log2 n such that H2 = 1. Clearly Hz is ambiguous. n will be factored by Stage 1
if h (-n) divides 2kH't=2 Pii for some k. If Stage 1 fails then Stage 2 does a random
walk through the group generated by H.

Stage 2 will factor n if ord(H2) < p2 for some k, i.e. if h(-n) divides 2kH=2 p'iq
for some q < p2. With pt = nl/2r Stage 1 of the algorithm takes 0(pt) compositions
and for random composite m E [0, n] with probability > r-r detects a proper
divisor of m. Stage 2 also takes 0(p1) = O(nl/2r) compositions and with probability
> (r - 2)-(r-2), r > 2, detects a proper divisor of m. Running Stage 1 on the
integers ns for s < rr, r = In n/In In n, every composite integer n will be factored
within o(exp /ln n ln ln n) bit operations. The latter bound already takes into
account the cost of the arithmetic. The cost for a composition in G(-n) is
proportional to the cost of the extended Euclidean algorithm, which given integers
U, v < n computes r, s E N with ru + sv = gcd(u, v). Using standard algorithms
for multiplication and division this takes O(ln n)2 bit operations, i.e. binary Boolean
operations; see Knuth [7, 4.5.2, exercise 30 and algorithm XI.

The particular features of the new factoring algorithm are:
(1) it can easily be operated with O(log n) bit storage,

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 291

(2) it is Monte Carlo in the sense that every 1000th integer will be factored about
1000 times faster than average time,

(3) the integers which will be factored very fast are randomly distributed; there is
no way to predict whether a given m will be factored fast,

(4) the algorithm is of the parallel type, e.g. 1000 processors will factor 1000 times
faster.

Properties (2), (3) seem to endanger the RSA-cryptoscheme, see Rivest et al. [15].
In particular no methods are known that generate class numbers with large prime
divisors.

Stages 1 and 2 of the algorithm are presented in Sections 2 and 3. The main
algorithm which factors arbitrary integers is given in Section 4. Some computational
experience with the factoring algorithm is reported in Section 5. In Appendix I we
collect basic theorems and algorithms on quadratic forms. Appendix II contains
various tables which demonstrate the performance of the algorithm. We exemplify
the distribution of class numbers and integers which are free of large prime divisors,
the frequency of class numbers divisible by small primes, and the performance of
various pseudo-random functions used in Stage 2 of the algorithm.

2. Stage 1 of the Algorithm. Let n be the integer to be factored. -n is the
discriminant of some quadratic form if and only if - n 1 mod 4 or - n 0 mod 4.
The purpose of Stages 1, 2 is to find a nontrivial divisor of n, provided - n is a
discriminant and h(-n) is a product of small primes. In order to factor general
integers n, the main algorithm in Section 4 applies Stages 1, 2 to multiples ns with
- ns 0, 1 mod 4. If - n is a discriminant, we can easily construct forms (a, b, c)
with discriminant -n: choose a small odd prime p with (7n) = 1 and solve
b2 _-n mod4p which yields b2 = -n + 4pc for some c E Z. Hence (p, b, c) has
discriminant - n.

Throughout Sections 2, 3 we restrict ourselves to the case - n 1 mod 4; consult
Theorem III, Appendix I for the case - n 0 mod 4. Then the unit 1 e G(- n) is
represented by the form (1, 1, (1 + n)/4). This ambiguous class yields the improper
factorization 1 n = n. The other ambiguous classes correspond in a 1-1 way to the
relatively prime factorizations of n with nontrivial divisors.

Stage 1. Let n E N, - n 1 mod 4, be given.
1. For some t E N compute the t first primesp1 = 29 P2 = 3,. . . pt,
2. choose Ho E G(- n) arbitrarily,
3. H:= H -2Pi" with ei:= max{v: pi pt}; if H = 1, then stop (in this case

ord(Ho) is odd and another Ho must be chosen),
4.H:= H,e*:= [log2v1
5. forv = 1,2,...,e* do[S:=H,H:= H2,ifH= 1 goto7],
6. go to Stage 2,
7. (at this point S is ambiguous and yields some divisor d of n).

Stage 1 by itself is the core of the new factoring algorithm. The improvements
resulting from Stage 2 are important for practical applications, but they scarcely
influence the asymptotic time bound of the main algorithm.

Fact 1. Suppose h(- n) I H=1 pei and ord(HO) is even, then Stage 1 generates
an ambiguous class S + 1.

292 C. P. SCHNORR AND H. W. LENSTRA, JR.

In case - n 1 mod 4 every ambiguous class S 0 1 yields a proper divisor of n.
In particular, when n has d odd prime divisors, then 2d-I I h (- n), and there are
exactly 2d- 1 ambiguous classes corresponding to the 2d-1 pairs { nl, n2} with
nln2 = n, n, < n2, gcd(nl, n2) = 1. Moreover, when n is composite and Ho E
G(-n) is chosen at random, then prob[ord(HO) even] > 1/2. Hence Stage 1 has a
chance > 1/2 to find a proper divisor of n, provided h(-n) 1H= pej. A few
repetitions of Stage 1 almost surely generate a proper divisor of n, provided
h (- n) H1= pei and n is composite:

Fact 2. Suppose h(- n) I H 1= p'ei and n is composite. If Stage 1 is passed with Ho
chosen independently k times, then with probability > 1 - 2-k a proper divisor of n
has been found.

Next consider the chance that for random m < n:

h(-m) <ei, e = max{ v: p p < p}2.

Siegel [21] proved:

Ve: hn-: VmE > n h(/m+]

We will base the analysis of Stage 1 on the following hypothesis

For all n and t:
t

#m <n: h(-m)lH
e l I;)(0.5 n)

(2.1) i

? *{r~nVerIHi}I#n.

H. G. Franke has tested this hypothesis experimentally, see Tables 1-3, Appendix II
for n = 4.7.108. In general the first term in (2.1) is considerably larger than the
second. Note that the frequency of class numbers h(-n) of fundamental discrimi-
nants (and a fortiori of general discriminants) which are divisible by p is larger than
l/p and is close to l/(p - 1) provided p is small with respect to n. These
experimental data and some recent calculations of Cohen and H. W. Lenstra, Jr.
indicate that class groups G(-n) of fundamental discriminants are distributed like
random Abelian groups of order O(Cn log n). Cohen and Lenstra have calculated
prob[m divides IGl] for m = 2,3,... and for random Abelian groups, where the
probability weight of G is proportional to I/IAut(G) . The values of Cohen and Lenstra
completely match with our experimental data. A corresponding observation with
respect to prime discriminants has been made by Leopoldt as cited in Zimmer [23].

Recently Canfield, Erdos, and Pomerance improved the theoretical lower bound
on the second term in (2.1). We refer in particular to the proof in Pomerance [14]:

THEOREM 3. Let 'I'(n, v):= # {x < n: xfree of primes > v}. For everye > 0 there
exists cE such that for all n > 10 and all r with nl/r > (ln n)l+E: I'(n, nl/r)/n >

(cErln r)-r.

In practice, however, 4I(n, nl/r)/n is larger than the bound stated in Theorem 3.
From experimental data, see Table 2, Appendix II, we conclude

(2.2) for all n and r < lnn/lnlnn n I: (n, nllr)/n > r-.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 293

COROLLARY 4. Assume (2.2) and (2.1). Then for all n > 1020 and allpt - nl/2r with

r < ln n/inInn:

m < n: h(-m)| Hlpei}/(0.5n) > 0.83 r

Proof.

m < n: h (- m)l jl pei)(0.5n)

(2.1) t
> w(A, n112r)lV _ pes-1

(2.2) i=

> rr - n-/rt

> r-r - 1.ln-l/rnl/2r/ln nl/2r (since t - ST(nl/2r) < 1.lnl/2r/ln nl/2r)

> r - r-2.2n- 1/2rr/ln n

> -r(-2.2r/In n)

(in fact r < i/n n/ln inn implies r-r> n-12r)

> 0.83r-r for n > 1020, r < On n/ln In. 0

Runtime of Stage 1. If HPPi is computed by the binary method (see Knuth 17,
?4.631), this takes

2 iog2 Pi i < 2 1og2 p2 < 4 iog2 PI

compositions in G(- n). Since there are about

t s ptl/n pt

primes < pt, this yields a worst case bound of

4n2t = 5.8pt compositions in total.

On the average, the binary method is somewhat more efficient. It takes about
1.5 log pii compositions to compute HPPi and therefore Stage 1 will only take about
4.4pt compositions in total. All together we have proved the following

THEoREM 5. Assume (2.1), (2.2), and that for every discriminant m < n (a single)
Ho E G(-n) in Stage 1 is chosen at random. Then for all n > 1020 and allp, = n1/2r

with r < iln n/ln In n: Stage 1 factors at least a 0.83nr-r fraction of the discrimi-
nants < n and takes about 4.4pt compositions in G(- n).

Remark. The discriminants which will be factored are "randomly" distributed in
[0, n.

For practical applications we advise to choose somewhat smaller exponents e,

instead of the ei:

et := max{v: p" <P} withp, = nl/2r.

294 C. P. SCHNORR AND H. W. LENSTRA, JR.

We used the larger ei for proving Corollary 4 by a crude argument. Assuming
I(n, nl/r)/n = O(r-r) one obtains Corollary 4 for the e':

m < n: h(-m)IF p" Pii)(O.5n)

(assuming that (2.1) holds for the ei)

> r- p-e-l

> r - (~-1/2r l/2r (r)-r-)
1/2 -1)2 J

> r -O?(ln n(r n r /- 1)

r r- c((r- 1)-(r-1)/(r lnln n)) = r-r(l- O(1/lnln n))

(since r < Viln n/ln ln n).

The choice of the e' are justified by our data in Appendix II. Tables 1, 2 show that
there are only a few discriminants h(- m), m = 4.7 108, such that h(- m) = HIt p=
with e > e' for some i > 2.

Table 4, Appendix II., by Odlyzko considers large integers. This table shows that for
r lnn/lnln n

{m < n: m even, mllcm(2,3,...,p,)}/n > rr.

Note that m Ilcm(2, 3,... p) m = Hi pei with ei < e' for all i. Hence in practice
Corollary 4 even holds when the e' are taken for the ei, and the constant 0.83 can be
replaced by some constant > 1. If we use the e' then Stage 1 will only take about
2.2pt compositions.

3. Using a Pollard-Brent Recursion in Stage 2. If h(-n) + 2e*Fjt2 pei with ei
- [log2 n/log2 PiJ, e* = [log2 A|n, then Stage 1 fails to factor n and computes

H:= Ho' =2Pe H:= H2e*

Stage 2 uses H, H and will most likely find a proper divisor of n within O(pt) steps,
provided that ord(H) < pt2 and ord(H0) is even.

Stage 2 generates a random walk through the cyclic group (H) with generator H.
With some function f: (H) -((H) let

H, := H, H fi+ : f (Hi).

The function f must be chosen such that

(3.1) f is easy to compute,
(3.2) f is sufficiently random,
(3.3) every relation Hj = Hk withj $ k yields an ambiguous

class S, depending on H,f,j, k.

It is known (see Knuth [7, Exercise 3.1.12]) that somej < k : V/2 pt with Hj = Hk
can be expected if f is sufficiently random and ord(H) t p7.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 295

We have two methods to design f and to associate the ambiguous class S to H, f, j,
k. Both methods will produce ambiguous classes S with S $ 1 whenever ord(H) is
even. Experience must decide which of the methods is more efficient.

Method 1. For some q E N choose random integers ai E [p,2, 2p,2] for i = 1, ... ,q.

Precompute Fi:- Hai, i = 1,.. ., q. For some random function g: (H) {1,..., q}
and recursively compute:

H, = H, Hi + = Hi Fg(Hi)

Use the procedure search below in order to find somej < k with H. = Hk. Then

k-1

HkHj-1 = HT= 1 with T= g(Hi).
i=j

Most likely we will have k < 2p, which implies T < 4p,.
Now suppose that ord(H) 2' mod 2` . We can easily compute e with T 2e

mod 2e+ 1. Then HT2 has order 2e and yields an ambiguous class

S := fT2e-e-l with S $ 1 provided e > 1.

Comment. A theoretical analysis of this method has been done by Sattler and
Schnorr [16]. For small values of q, e.g. q = 2,3,4, the commutativity of the
recursion steps increases the number of recursion steps as compared with a pure
random recursion f: (H) -* (H). By experience this slow-down is negligible as
soon as q is > 16. We have tested this recursion scheme in class groups (see Table 5,
Appendix II) and in cyclic groups (H) = Z/n Z, in particular with n prime. Method
1 even works well for nonrandom ai like ai = ci with c fixed. The advantage of
Method 1 over Method 2 is that it explicitly yields a multiple T of the order of H.
Also, Method 1 only takes a single group operation (i.e. composition in the case of
class groups) per recursion step.

Method 2. Choose a random function g: (H) {1, . , q }, choose random values

a,,.. . aq E [p, 2p,2]and precompute Fi:= Hai, i 1,... ,q.

Recursion on H. (We compute Hi - HCi and di with di ci mod 232.)

H1:= H, di := 1;

for i = 1, 2,... till search finds somej < k with Hj = Hk do

((Hi3, 3di mod 232) if g(Hi) < q/2,

(HD i+d1i+1j):l (HiFg(H;), di + ag(H,) mod 232) otherwise.

Use the procedure search below in order to find some j < k with Hj = Hk. Since
Hi - Hci and H = Hf2e* it follows that fl2e*(Cj Ck) = 1. We compute t such that

dj - dk= 2'mod2'+ . Almost surely t will be less than 32, and this implies
Cj - Ck = 2tm for some odd m. It remains to compute Hm, since Hm/2 is ambiguous
for some v < t. We do not compute m explicitly, but we retrace the above recursion
on H. In the following assume t > 1. If t = 0, then Ht can easily be computed from
the g(Hi).

Recursion on H. (We compute Hi = H [cI/2'J and ri = ci mod 2' for t > 1.)

296 C. P. SCHNORR AND H. W. LENSTRA, JR.

H1 := 1 (the unit class), r1 := 1;
for i= 1, 2,. ,k do

((l3r, {i-(s2t) with s = [3r/2tJ] if g(Hi) < q/2,

Gwi+l, ri+l):-4= rHi , + ag(H,) -s2)

with s = (r, + ag(H))/2tJ if g(Hi) > q/2.

It can easily be verified that Hi c = i [c/2'J. Hence Hj & 1, Cj = --C012' = Htm with
m odd. This yields

Fact 6. Let ord(H) 2emod2e'l, e < 32, and HjHA7' = 1, then ord(H-j 1) =

2e.

Therefore S = (H1H,71)2 is an ambiguous class with S $ 1 whenever e $ 0.
Comment. We have tested Method 2 in class groups and in cyclic groups

(H) = Z/nZ, in particular with n prime. For random functions g: (H) +
{1,...,q) we obtained average values of about V/2 Vn for the smallest index k
such that there exists some j < k with Hj = Hk, see Table 6, Appendix II. On the
average,Method 2 takes 1.5 group operations (i.e. compositions in the case of the
class group) per recursion step. A recursion step takes 2 compositions if Hi+, = Hi3
and 1 composition if Hi +1 = Hi Fg(H.). By reducing the frequency of the Hi+ = H13-
steps the average number of compositions per recursion step can still be reduced.
Method 2 also works well with nonrandom ai like ai = ci, i = 1,...,q,with c fixed.
Because of the noncommutativity of the recursion steps, Method 2 works with a
smaller number q of multipliers Fi = Hai than Method 1. We successfully applied
Method 2 with q = 4.

The following pseudo-random function g: (H) {l,- .. , q } works well for both
methods (let (a, b, c) be the reduced form in H):

g(H) = [(b2mod p)q/pj +1
with p a prime, q < p < V; see Tables 5, 6, Appendix II, forp = 213 - 1.

The search for Hk = Hj with j < k. Let H1 = H, Hi+ = f(Hi). We follow an idea
of Brent [1] and do not store all the H, but only a fixed number of them. When
computing Hi, the stored classes

H,ff(p), P = 1,2,...,7,

for sufficiently large i, will be such that

a(>() = 0(>)l.l^,v I P= 1,...,7,
with 1.17a(1) < i < 1.18a(1) = 2.14a(1).

The recursion for Hi is continued until some Hk = H,(,) has been found. The
corresponding program looks like

Search. H1:= H, a(P) := 1 for v = 1,. . . ,7; for i = 2,. .. do
compute Hi from Hi_ 1
if 3vP: H,,(,) = Hi then [j := a (P), k := i stop]

if 1.18a(1) < i + 1 then
store Hi instead of Ha(,)

La()= (fa(v + 1) forv 7
i ~~for P' 7]

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 297

Let A be the period and u the length of the nonperiodic segment of the sequence Hi,
e.g.

H, 'uE.+x, Hi *Hz for i <I< + A.

Fact 7. The procedure search finds somej < k with Hk = Hj within < 1.1m + X
recursion steps, m := max(X, ,t).

Proof. Since a increases by the factor 1.1, a will take some value a(v) with
m < a(p) < 1.1m. Hence the for-loop stops, at the latest, with

k = a(p) + A < 1.1m + A, j = U(P)q

and finds the equality Hk = Hj. C
Under the assumption that each of the ord(H)'rd(H) functionsf: (H) -+ (H) has

probability ord(H) ord(H), the stochastic behavior of t, X have been well analyzed
(see Knuth [7, Exercise 3.1.12]).

The expected values of ,u and X are

1 + E(lu) E(X) - v ord(H)

E(,u + X) 1.25Vord(H) - 1/3,

Prob[,L + A < - ord(H)] e-v/4 0.46.

We conclude from Fact 7 that the number of recursion steps in search will be about

1.1 (E(y) + E(X)) = 1.32 ord(H),

provided that f: (H) -- (H) is sufficiently random.
If in Stage 2 we compute the Hi for i < 1.32 pt, then most likely some relation

Hi = Hk,] < k, will be found, provided ord(H) < p2. It remains to analyze the
chance that ord(H) < p72. For each prime p, pt < p < p72, we assume that the
frequency of class numbers h(- m), m < n, which are divisible by p is > p -, and
we assume that h(- m)/p factors like random integers of size Vn/p. By retracing
the proof of Corollary 4, we conclude from the assumptions (2.1), (2.2):

For all r, n, t with n > no pt = n1/2r,r < Vln n/lnln n:

and for all primes p = nl/2s < p7

(3.4)~ # m < n: h (-m)l p rl e,i)/(? S n)

? 0.83p-1(r -r/s)(r-r's)

Summing over all p, nr1 /(1 + e) < p < nl/r, this yields

(m<n:h(-m)jpfjpiwithp <p,/(0.5 n)

>0.83 E p 1(r-2 +))7(1+
nr-1/(1 +E) <p < 1l/r

(using Theorem 4.27 in Hardy and Wright [61 there follows)

> 0.83 ln(l + e)(r - 2/(1 +))-(r-241+E))

298 C. P. SCHNORR AND H. W. LENSTRA, JR.

Conclusion. Assume (2.1), (2.2) and that for every discriminant m < n, Ho in
G(-m) is chosen at random. Then Ve > 0: 3c, > 0: Vn > nO and all Pt = nl/2r,

r < i/nn/in in n: Stages 1 and 2 with O(pt) compositions, factor at least
ce(r - 2 + e)-(r-2+E)n discriminants < n.

If one assumes that very large class numbers h(-n) factor like even integers of
size n, then we can compare the efficiency of Stages 1 and 2 by Odlyzko's Table 4,
Appendix II. The table indicates that for class numbers h(-m) = 10', 1 = 15, 20,

25, 30, the success frequency of Stages 1 and 2 is at least r-r and is at most er2 times
the success frequency of Stage 1. Note that (r - 2) -r- 2)/r -r approaches er2 for
large r.

Remark. There is a well-known deterministic method for doing Stage 2 within

V2pt compositions and with O(pt) storage. The method is explained in Shanks [17,
p. 419] in terms of "baby" and "giant" steps. In our situation we can even speed this
method by a constant factor if we exploit the fact that ord(H) will most likely have
no prime divisor < pt.

4. The Main Algorithm. The new algorithm can be used for factoring any
composite integer n. We apply Stage 1 to multiples ns of n such that - ns is a
discriminant. Here we exploit the observation that class numbers h (- ns) of funda-
mental discriminants - ns are uncorrelated for distinct values of s. The nonfunda-
mental discriminants - ns should be discarded as far as possible. The discriminant Av
is fundamental if

-3 w E N, w # 1: Av/w2 is a discriminant.

In fact, the class number formula (see Dirichlet [8]),

h(-m) = I F11(1 - J- in) form < 45
() T ~p pFJime (P (P))

implies for gcd(w, m) = 1 and w square free:

h(mw2)/h(-m) = wH(1 - 1(p =)) = H((P))

Hence for small w, h(-m) and h(-mw2) have the same large prime divisors,
provided gcd(m, w) = 1.

Main Algorithm. Let n be the number to be factored and Pi = 2, P2 = 3,... 'Pt the

first t primes, Pt = nl/2r (the appropriate choice of t, r will be determined by the
subsequent analysis).

1. s:= 0
2. take the next s with gcd(n, s) = 1, -ns 0, 1 mod4 and -[3w E N: w2 Is,

w # 1, -ns/w2= 0,lmod4]

3. run Stage 1 on ns, which takes O(pt) compositions. If Stage 1 yields an
ambiguous class S then go to 4, otherwise return to 2 and take the next s

4. if S yields a factorization of n then stop, otherwise go to 5
5. return to 3 and repeat Stage 1 on ns with independently chosen classes Ho E

G- ns) until some factorization of n has been found. In order to prevent that
merely useless ambiguous classes are generated, continue to build up the
2-Sylow group S2(- ns) of G(- ns). Use Stage 1 to generate classes in

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 299

S2(- ns). Apply the recursion step of the method below whenever a new
A E S2(-ns) has been found.

The 2-Sylow group S2(-ns) is a direct product of cyclic groups of order 2mi,

mj > 0: S2(- ns) $= EiDZ/2miz. Let A be the number of cyclic components, then
S2(- ns) has 2A' ambiguous classes. Let d be the number of odd prime factors of ns.
Then by Theorem III, Appendix I, A is d - 1, d or d + 1 depending on the maximal
power of 2 which divides ns. The ambiguous classes that do not yield a factorization
of n form a subgroup S2(- ns) of S2(- ns). Let d, ds be the numbers of distinct odd
primes of n and s. Since gcd(n, s) = 1, we have d = dn + ds. It follows immediately
from Theorem III, Appendix I, that the number A' of cyclic components of S2(- ns)
is < A - d < ds + 1.

Constructing S2(- ns) till a factorization of n is found. Given a procedure that
generates elements of S2(- ns) (this will be done by Stage 1) we recursively construct
subsets {A1,.. ,A-} C S2(-ns), A< A' such that

k
(4.1) |(A1,.. ,AA -)I= HI ord(AX).

i=l

Let ord(Ai) = 2%i5 Bi = Ai , (A1,...,A-) = S2(-ns). Then S2(-ns)
, 1 Z/2miz and B1,... , BA- generate the subgroups of ambiguous classes of S2(- ns).

After each recursion step either a factorization of n has been found or the new group
S2- ns) will be the subgroup of S2(- ns) which is generated by the previous
S2(-ns) and the element A E S2(- ns) obtained in step 1.

(4.2) Algorithm for S2(- ns).

0. :=0,A1:= 1(= theunitclass)
1. generate anotherA e S2(-ns), A 0 1
2. compute A A2,.. ,A2`l # 1 A2m = 1 and putB:= A2`1
3. if B yields a factorization of n then stop
4. test whether B E (B1,BA-); if B (B1, BA-) then go to 5 else compute

J c {1,... ..,A } with B = Hlj=jBj and go to 6
5. AA-+:= A B^-+,:= B, A :-A +lreturn tol1
6. If 3j E J: m1 < m then selectj E J with m1 minimal and interchange A with A1,

B with B, and m with m
7. (wehave 2ml 2H J 2mJm 7. (we have A2 = [l j2jA m K m. for j E J). Put A:= A * . EHAi2 'A ; if
A = 1 go to 1 else go to 2 (the new m to be computed in 2. will be smaller than
the present m since A2m 1 holds for the new A)

Run Time Analysis of the Main Algorithm. We separately bound
1. the number T(n) of bit operations to be done till some s has been reached with

h(- ns) IH| pei, ep = max{v:i < p
i=l

2. The number T(n) of bit operations for building up the 2-Sylow group S2(-ns)
of G(- ns) till a factorization of n is found.

300 C. P. SCHNORR AND H. W. LENSTRA, JR.

1. T(n). We will assume that Corollary 4 extends to multiples of n:

3c, no > O: Vm: Vn > no: Vp, = (nm)l/2rwith r < ln n/Inln n:

*43 {ns: s < m A h(-ns)IH e
(.5m ,c

Our experimental data in fact confirm the lower bound r- r. The assumption (4.3)
implies

Vn > no: Vpt = (n3r r/c)12r , r < /ln n/lnln n

3s < 3r rIC: h (-ns)l I F pei
i=l

Since Stage 1 takes 0(pt) compositions, we have

T(n) = 0(ptrr(ln n)2) = 0(n1/2rrr+1/2 (ln n)2).

Here O(ln n)2 takes into account the costs for the arithmetic. We choose r
-ln n/ln ln n , pt (n3rr/c)l/2r = 0(nl/2rV). Then all together (4.3) implies

T(n) = o(exp lnnlnlnn).

2. T(n). In order to factor n we need only to find at most ds + 2 cyclic
components of S2(-ns). If the passes through Stage 1 generate independent
elements of S2(- ns) then k passes of Stage 1 with probability > 1 - 2-k detect a
new cyclic component of S2(-ns). Hence almost surely we need at most 0(ds)
passes through Stage 1, and each pass takes 0(pt) compositions. The number of
steps for updating the information on S2(-ns) can be bounded as 0(s): the most
costly operation in Algorithm (4.2) is to check whether B E (B1,.. , BA) (step 4).
Since A< X' < ds + 1 this can be done in a crude way by comparing B with each of
the 2A < 2ds+1 = 0(s) elements of (B1,... ,B-). This takes 0(s) steps and is
sufficient for our purposes. We obtain

(n) 0(ds(pt + s)(ln n)2) = O(log s(nl/2rVT + s)(ln n)2)

with s < rr, r < /ln n/ln ln n . Here again O(ln n)2 bounds the cost for the arith-
metic. It follows immediately that T(n) = o(T(n)).

Conclusion. If (4.3) holds, then the Main Algorithm, using only Stage 1, takes
o(exp v/ln n ln ln n) bit operations to factor arbitrary, composite integers n.

If we also apply Stage 2, then s will be bounded as 0((r - 2)(r-2)), and this will
save a time factor of about r2 = ln n/ln ln n.

5. Some Computational Experience. The new factoring method has been pro-
grammed in Fortran on a DEC-1091 at Frankfurt University. The core of the
algorithm is a subroutine for composition of quadratic forms written in machine
language and based on the improved composition method proposed by Seysen [20].
The arithmetic operations and the gcd-calculations have been programmed for two-
word integers, i.e. for integers < 270. This means that the program can factor
integers < 23 = 1039 using multipliers < 210. Stage 1 uses the exponents
e,:= max{ P: p7 < pt }. Hence the number of compositions per multiplier for Stage 1
is about 2.2 pt. Both methods for Stage 2 have been tested and they are comparable
in efficiency.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 301

TABLE 0

n = 1030 n~ 1034 n = 1038

Pt 4093 8191 16 381

t= of primes 563 1027 1899

compositions
per multiplier 104 2 . 104 4 . 104

in Stage 1

inStage2 3 . 10' 3.7 103 3 . 104

average number 14.4 18 31
of multipliers

median of the
numbers of 8 9 23
multipliers

of integers 50 20 20
factored

seconds per seconds per
1.4. 10- 3

1.5 10- 3 1.57 10- 3

composition

average time 4.4 min 10.7 min 57 min
for factoring

median of the 2.4 min 5.3 min 42 min
factoring time

The integers n which have been factored for Table 0 are products of two distinct
primes Pi, P2 of nearly the same size. It turns out that the median of the factoring
time is considerably smaller than the average factoring time. This is due to a small
fraction of integers n which take extremely many multipliers. On the other hand
there is a considerable fraction of integers which only take very few multipliers. For
instance the seventh Fermat number F7 = 227 + 1 = 3.4- 1038 only took 7 multi-
pliers and was factored in about 7 minutes. Here we used pt = 16381 but we run
Stage 2 for only 7500 compositions, hence each multiplier took about 1 minute. The
multiplier 15 has been successful.

We observed that the factoring method is somewhat faster for integers with more
than 2 prime divisors. By our observation class numbers of discriminants with many
prime divisors tend to have fewer large prime divisors compared with class numbers
of discriminants which are prime or products of two primes. For instance, for
n = 1030, n a product of 5 primes pi 106, the algorithm on the average only took
8.7 multipliers. The median of the number of multipliers has been 5, compared with
14.4 and 8 in Table 0. We have factored a sample of 200 of these integers n.

Appendix I on Quadratic Forms. We report classical theorems and algorithms on
quadratic forms, see Gauss [5], Mathews [10]. A quadratic form ax2 + bxy + cy2

with a, b, c E Z is denoted as (a, b, c). Its discriminant is A = b2 - 4ac. (a, b, c) is
positive if a > 0, primitive if gcd(a, b, c) = 1. Two forms (a, b, c), (a, b, c-) are
equivalent if there exists a linear transformation with integer coefficients and
determinant 1 transforming the one form into the other, i.e.

(a b/2) T= a 2

302 C. P. SCHNORR AND H. W. LENSTRA, JR.

for some integer matrix T with det T = 1. Let [(a, b, c)] be the class represented by
(a, b, c). For negative discriminants we always restrict to positive forms.

Two classes [(a, b, c)], [(a, b, c)] yield a new class [(A, B, C)] by composition as
follows (for explanation see Lenstra [9]):

d:= gcd(a, a,(b + 3)/2)

Let a,1P, y E Zbesuchthataa + #a3+ 72(b + b) = d.

(5.1) A =aad2

B=b+-d 2[(-yc)moddJ

C = (-_ + B2)/(4A).

[(A, B, C)] does not depend on the particular choice for a, /3, y, B, and C. (A, B, C)
will be primitive, if (a, b, c) and (a-, b, c) are primitive.

THEOREM I. The equivalence classes of primitive quadratic forms with discriminant A
form an Abelian group G(A) under composition. Its order h(/\) is the class number.

The unit class 1 in G(l) is represented by the form

(1,0,-/4 if A 0 mod4,

(1,5 1, (1 - /)/4) if A -1 mod 4.

The inverse of [(a, b, c)] is [(a, - b, c)].
A class H E G(l\) is ambiguous if H2 = 1. The following assertions are equiva-

lent:

(1) H is ambiguous,
(2) every form (a, b, c) in His equivalent to (a, -b, c),

(3) T(a b/2
cT

T (b/2 c)

for some integer matrix T with det T = -1
(4) there is a form (a, b, c) in H with aIb.
For negative discriminants A, classes in G(A) correspond to reduced forms. (a, b, c)
is reduced if (1) Ibl < a < c and (2) b > 0 if IbI = a or a = c (i.e. if [(a, b, c)] is
ambiguous).

THEOREM II (GAuss, [5, Art. 1721). In every equivalence class with negative
discriminant there is exactly one reducedform.

Gauss also gave a gcd-like reduction algorithm which transforms a given form
(a, b, c) into an equivalent reduced form:

(5.2) reduction process for (a, b, c)
1. find v E Z: -tat < b + 2Ya < jai
2. b:= b + 2va, c:= (b2 - A)/(4a)
3. if (a, b, c) is not reduced then replace (a, b, c) by (c, - b, a) and go to 1.
The reduced forms of ambiguous classes with A < 0 are of either of the following

types:
(i) b = 0, (ii) a = b, (iii) a = c.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 303

These forms are called ambiguous. Every ambiguous form corresponds to a factoriza-
tion of the discriminant as

(i) /\ = -4ac, (ii) Av = b(b - 4c), (iii) Av = (b - 2a)(b + 2a).

In order to describe this correspondence more precisely, let

F(n) = {(nl, n2) E N2: n = n1n2, gcd(nl, n2) = 1}

be the set of relatively prime, ordered factor pairs of n E N. We have #F(n) = 2
where d is the number of distinct prime divisors of n.

Let A 2' mod 2e`1, z < 0, then the set A(Av) of ambiguous forms with discrimi-
nant Av is either in 2-1 or in 1-1 or in 1-2-correspondence with F(- zA/2e).

THEOREM III. Let the discriminant Av < 0 have d odd prime divisors. Then the set
A(Ai) of ambiguous (reduced, positive, primitive) forms with discriminant A = -2en, n
odd, is obtained from the (n1, n 2) e F(n) with n1 < n 2 as follows:

case e = 0 (i.e. A 1 mod 4): #A(Av) = 2#F(n) = 2d-

(ii) (n1, n1,(n1 + n2)/4) if 3n1 < n2
(iii) ((n1 + n2)/4, (n2 - nj)/2, (n1 + n2)/4) if 3n1 > n2
case e = 2, n I mod 4, n 0 1: #A(1) = #F(n) = 2"

(i) (nl,O, n2)

(ii) (2nj, 2nj, (n1 + n2)/2) if 3n1 < n2

(iii) ((n1 + n2)/2, n2 - nl, (n1 + n2)/2) if 3n1 > n2

casee= 2, n - mod4: #A(A) #F(n) 2

(i) (nl, O, n2)
case e = 3,4: #A(A) = #F(n) 2d

(i) (min(n,2e-2, n2),0,max(n12e-2, n2))

(min(n22e-2, nl), O, max(n22e-2, nj))
casee > 5: #A(zA) = 2#F(n) =2d+

(i) (min(nh2e-2, n2),O,max(n,2e-2 n2))

(min(n22e-2, n1),O,max(n22e-2, nj))

(ii) (4,4,1 + 2e-4nln2)

(iii) (22e-4n + nl, 2e-3 n 12, 2e-4 n + n1l) if 3n1 > n22e-4 (i) (2 e-4n + n 2e-3n - 2ne24
1 2, n1- 2'2 2 n + n2) if 3n1 < n22

We have listed pairwise inequivalent forms corresponding to distinct positive
ambiguous classes. They have been arranged according to their types (i), (ii), (iii) as
introduced above.

Theorem III can easily be obtained from Gauss [5,Art. 257-259]. Observe that our
classes with discriminant Av 0 mod 4 (A- 1 mod 4, resp.) correspond to primitive
Gauss classes with determinant D = zA/4 (improper primitive Gauss classes with
determinant D = A, resp.). The number of ambiguous classes has also been listed in
Cassels [2, p. 342].

The Efficiency of Composition. An efficient composition algorithm is the main
requirement for a satisfactory implementation of our factoring algorithm. All

304 C. P. SCHNORR AND H. W. LENSTRA, JR.

calculations in G(zA) are done with reduced forms. Composition consists of two
parts:

1. evaluation of (5.1): (a, b, c), (a, b, e) (A, B, C) (this amounts to an extended
gcd-calculation on integers of size O(0 Ij;I)),

2. reduction of (A, B, C).
If the reduction is done as in (5.2) this corresponds to an extended gcd-calculation

on integers of size 0(1 I). However, M. Seysen [20] found a faster reduction
algorithm for this particular situation. Reducing (A, B, C) by this algorithm corre-
sponds to only half an extended gcd-calculation on integers of size O(A-D).

Appendix II: Statistical Tables. Table 1 shows the distribution of class numbers
h (- m) without large prime divisors for discriminants - m in the interval I = [- 472
650 003, - 472 600 000]. There are 25 002 discriminants, the minimal, maximal, and
average class numbers are 1518, 47 452, and 9 469.77. We put

ei(m) := maxf P: pllh (-m))}

For every prime p, = 2, 3,... ,89 we record the percentage of those discriminants
- m E I satisfying the following conditions:

column 1 h(-m) is free of primes > pt, i.e. h(-m) = r
i Pm

i=1

column 2 for all i > 2: e, (m) ei maxt v: p, < p2},

column 3 for all i > 2: ji(m) < e':= max{P:p" < p,

column 4 h (-m)IH npl(m) * q for some q < pt2, q prime,
i=l

column5 4 f(- m) q H p q* 2e1(m) for some q < p2, q prime,
i=2

column 6 h(- m)l H q * 2e1(m) for some q < p2, q prime.
i=2

Moreover we note in

column 7 r = ln n/(2 In Pt)
column 8 102 r-r.

Observe that the entries in columns 1-3 of Table 1 are always greater than 102rr,
which confirms Corollary 4. For r < ln n/ln ln n (i.e. r > 2.58, Pt > 53) the entries
in column 3 are only slightly smaller than those in columns 1, 2. This suggests that
Stage 1 should be done with the smaller exponents e' instead of the e1.

Table 2 has the same meaning as Table 1 but is restricted to fundamental
discriminants in the same interval I. Minimal, maximal, and average class numbers
are 1518, 47 425, and 10 033.9. There are 15195 fundamental discriminants in I.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 305

TABLE 1

Pt col 1 col 2 col 3 col4 col 5 col6 col 7 col 8
2 0.18 0.18 0.18 0.44 0.44 0.44 14.408 .000
3 2.08 0.82 0.44 5.39 2.82 1.46 9.090 .000
5 5.70 2.70 1.00 18.32 12.55 6.46 6.205 .001
7 10.21 7.55 2.00 32.52 28.95 14.45 5.132 .023

11 14.43 12.60 6.12 49.58 47.47 35.57 4.165 .263
13 18.87 17.64 8.92 58.26 56.95 43.27 3.894 .503
17 22.47 21.75 11.51 68.90 68.16 53.20 3.525 1.179
19 26.04 25.55 14.12 73.57 73.08 57.57 3.392 1.588
23 29.28 28.79 16.77 79.60 79.11 63.43 3.185 2.497
29 32.10 31.93 24.73 85.48 85.30 77.38 2.966 3.978
31 34.70 34.52 27.13 87.27 87.09 79.09 2.908 4.484
37 37.00 36.87 29.32 90.69 90.56 82.46 2.766 5.999
41 39.24 39.10 31.46 92.49 92.36 84.25 2.689 6.992
43 41.30 41.16 33.43 93.30 93.16 85.03 2.655 7.480
47 43.18 43.12 35.25 94.43 94.38 86.16 2.594 8.438
53 44.92 44.88 38.93 95.71 95.67 89.58 2.515 9.825

59 46.48 46.45 40.46 96.66 96.63 90.52 2.449 11.147
61 48.02 48.00 41.98 97.02 96.99 90.88 2.429 11.574
67 49.44 49.41 43.38 97.64 97.61 91.50 2.375 12.813
71 50.65 50.63 44.59 98.02 98.00 91.88 2.343 13.606
73 51.58 51.80 45.74 98.13 98.11 91.98 2.328 13.993
79 53.06 53.04 46.97 98.56 98.54 92.41 2.286 15.117
83 54.08 54.07 49.59 98.77 98.76 94.27 2.260 15.837
89 55.12 55.11 50.63 99.00 98.99 94.50 2.225 16.875

TABLE 2

Pt col I col 2 col 3 col4 col 5 col6 col7 col8
2 0.17 0.17 0.17 0.31 0.31 0.31 14.408 .000
3 1.26 0.51 0.31 3.17 1.69 1.00 9.090 .000
5 3.69 1.65 0.67 12.93 8.90 4.62 6.205 .001
7 6.96 4.98 1.36 25.44 22.53 11.79 5.132 .023

11 10.22 8.68 3.96 41.54 39.70 29.83 4.165 .263
13 14.02 13.04 6.19 50.71 49.63 37.90 3.894 .503
17 17.09 16.46 8.37 61.77 61.11 48.16 3.525 1.179
19 20.14 19.69 10.57 67.04 66.57 53.10 3.392 1.588
23 23.09 22.64 12.89 74.04 73.58 59.89 3.185 2.497
29 25.73 25.55 19.23 81.03 80.85 73.64 2.966 3.978
31 28.21 28.03 21.47 83.22 83.04 75.73 2.908 4.484
37 30.42 30.29 23.57 87.39 87.27 79.86 2.766 5.999
41 32.66 32.53 25.69 89.78 89.65 82.22 2.689 6.992
43 34.68 34.56 27.61 90.82 90.69 83.24 2.655 7.480
47 36.59 36.54 29.44 92.28 92.23 84.69 2.594 8.438
53 38.37 38.33 33.02 94.01 93.97 88.48 2.515 9.825

59 39.94 39.91 34.56 95.26 95.23 89.73 2.449 11.147
61 41.46 41.43 36.06 95.75 95.72 90.22 2.429 11.574
67 42.84 42.81 37.42 96.63 96.60 91.10 2.375 12.813
71 44.02 44.01 38.59 97.16 97.14 91.62 2.343 13.606
73 45.08 45.07 39.63 97.29 97.28 91.75 2.328 13.993
79 46.45 46.44 40.97 97.90 97.89 92.36 2.286 15.117
83 47.60 47.59 43.35 98.17 98.16 93.89 2.260 15.837
89 48.69 48.69 44.44 98.50 98.49 94.22 2.225 16.875

306 C. P. SCHNORR AND H. W. LENSTRA, JR.

TABLE 3

v - 2 3 4 5 6 7 8 9 10

all discr. 93.64 51.25 82.53 24.70 48.18 16.92 63.44 20.30 23.18
fund.discr. 91.83 42.49 78.51 23.94 38.97 16.41 56.90 15.41 21.97

v 11 12 13 14 15 16 17 18 19 20

all d. 9.83 42.42 8.33 15.98 12.58 43.54 6.07 19.09 5.36 20.50
fund. 9.35 33.15 8.42 15.16 9.95 36.62 5.96 14.11 5.22 18.85

v 21 22 23 24 25 26 27 28 29 30

all d. 8.77 9.27 4.45 32.64 5.03 7.77 7.15 14.13 3.62 11.85
fund. 7.13 8.65 4.48 23.88 4.99 7.67 5.27 13.02 3.67 9.12

P 31 32 33 34 35 36 37 38 39 40

all d. 3.13 27.09 5.10 5.68 4.15 16.90 4.66 5.01 4.26 15.73
fund. 3.17 21.38 3.91 5.44 4.00 12.04 2.71 4.76 3.61 13.55

v 41 42 43 44 45 46 47 48 49 50

all d. 2.53 8.30 2.27 8.21 5.10 4.19 2.04 22.33 2.42 4.70

fund. 2.64 6.58 2.34 7.40 3.56 4.15 2.13 15.42 2.29 4.57

v 51 52 53 54 55 56 57 58 59 60

all d. 3.12 6.89 1.86 6.74 2.35 10.74 2.75 3.40 1.66 10.43
fund. 2.54 6.58 1.95 4.81 2.22 9.44 2.26 3.39 1.70 7.71

v 61 62 63 64 65 66 67 68 69 70

all d. 1.65 2.95 3.46 15.67 2.03 4.84 1.49 4.96 2.16 3.88
fund. 1.67 2.95 2.59 11.66 2.03 3.62 1.49 4.57 1.75 3.65

v 71 72 73 74 75 76 77 78 79 80

all d. 1.27 13.10 1.18 2.53 2.53 4.39 1.62 4.02 1.28 10.87
fund. 1.27 8.73 1.08 2.53 2.09 4.00 1.53 3.32 1.42 8.65

v 81 82 83 84 85 86 87 88 89 90

all d. 2.45 2.38 1.03 7.33 1.36 2.11 1.82 6.38 1.06 4.81
fund. 1.84 2.44 1.18 5.67 1.30 2.12 1.57 5.36 1.12 3.25

v 91 92 93 94 95 96 97 98 99 100

all d. 1.38 3.78 1.64 1.89 1.26 13.85 1.00 2.30 1.99 4.19
fund. 1.35 3.63 1.40 1.92 1.17 8.91 1.05 2.12 1.45 3.98

Table 3 shows the percentages of discriminants (fundamental discriminants, resp.)
- m e I such that P divides h (- m) for P = 2, . .,100. These percentages are always
greater than 100/i, which confirms hypothesis (2.1). For small primes p these
frequencies are close to 100/(p - 1).

Table 4 is due to A. Odlyzko. The entry ak in the line starting with 1, k and
column headed with v (v = 2k, 8,. .. , 0) is the number of integers m from among the
first 100,000 even integers > 10' which have the property that

m/gcd(mr lcm(ln0 ...'n 2k)) <n 2lO r

The last two columns record r = In 10'//n 2 k and 105 r-'.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 307

TABLE 4

l k 2k 8 6 4 2 0 r 105r-r

15 6 0 0 0 0 0 0 8.305 .002
7 0 0 1 2 2 3 7.118 .086
8 1 2 6 15 36 49 6.229 1.127
9 6 17 68 129 210 336 5.537 7.674

10 27 162 316 530 859 1282 4.983 33.460
11 110 585 1043 1661 2447 3445 4.530 106.655
12 326 1806 2805 4059 5565 7388 4.152 270.747
13 691 4075 5854 7956 10434 13307 3.833 579.832
14 1425 7716 10462 13538 16981 20804 3.559 1090.481
15 2416 12853 16521 20531 24871 29519 3.322 1853.443
16 3852 19174 23694 28542 33620 39114 3.114 2907.505
17 5691 26485 31787 37273 43148 49122 2.931 4276.365
18 7979 34478 40349 46620 52592 58262 2.768 5968.217

20 9 0 0 0 0 0 0 7.382 .039
10 0 0 1 3 6 17 6.644 .344
11 0 9 22 48 85 120 6.040 1.917
12 6 70 118 190 271 384 5.537 7.674
13 25 218 345 510 725 967 5.111 23.945
14 71 625 907 1258 1672 2182 4.746 61.742
15 163 1410 1937 2579 3331 4258 4.429 137.169
16 320 2787 3689 4719 5930 7353 4.152 270.747
17 604 4952 6257 7800 9590 11639 3.908 485.833
18 1019 7744 9640 11764 14156 16640 3.691 806.566

25 11 0 0 0 0 0 0 7.550 .024
12 0 2 3 3 3 3 6.921 .153
13 0 7 9 16 21 33 6.388 .711
14 2 35 48 63 93 134 5.932 2.590
15 8 98 128 182 262 357 5.537 7.674
16 21 240 339 474 635 809 5.191 19.395
17 43 567 767 1014 1273 1610 4.885 43.121
18 105 1176 1532 1911 2367 2895 4.614 86.333

30 12 0 0 0 0 0 0 8.305 .002
13 0 0 0 0 0 1 7.666 .017
14 0 0 0 0 1 1 7.118 .086
15 0 1 1 3 5 11 6.644 .344
16 0 9 15 22 35 56 6.229 1.127
17 0 43 66 94 130 166 5.862 3.144
18 6 122 170 234 297 375 5.537 7.674

35 15 0 0 0 0 0 0 7.751 .013
16 0 2 3 3 3 3 7.267 .055
17 1 8 8 9 9 13 6.839 .195
18 3 21 22 22 27 34 6.459 .585

Table 4 also confirms our assumption (2.2). Note that al,k,l is the number of
integers m among the first 100,000 even integers > 10' such that

m = H|pfA(m) withp`i(m) < 2k

(which implies m Hn 1 Pl for the first prime p, > 2k). The table shows

a/,k,l > 105r-' for r = ln 10//ln 2k < /ln 10/ln ln 101.

308 C. P. SCHNORR AND H. W. LENSTRA, JR.

This suggests an even stronger assumption than (2.2):

{m <n:mIH I}/n > r

for all n, r _< in n/ln In-n and pt < n17r. Here e' := max{ v: p' < p}.
Table 4 can be used to balance Stages 1 and 2. If we factor a discriminant

n = 1021, then h(- n) will be about 10'. We choosept p 2k. Then hypothesis (2.1)
suggests that there is some s < 105/alk,v with

h(-ns) I lpeq and q22k-.
i=l

Hence Stages 1 and 2 will run on at most 105/ak,l,, multiples - ns. Stage 1 with the
exponents e' takes about 2.2pt compositions. If we run Stage 2 with Method 2 for
2 k-/2 recursion steps, then Stages 1 and 2 will most likely factor this particular ns
(see Table 6, Appendix II, for the performance of Method 2 in Stage 2). In this way
Stage 2 takes about 1.5 2k - P/2 compositions. Therefore the total number of composi-
tions of the Main Algorithm will be bounded by

b/k ,: . - 2 (2.2 + 1.5 2 /2).

Examples. n = 1030. Choose k = 12, P = 0, a15,120 = 7 388. We have [b15,120J =

205132, and n will be factored in about 2 * 105 n 0.18 compositions.
n = 1040. Choose k = 14, P = 0, a20,14,0 = 2 182. We have [b20140J = 2778221,

and n will be factored in about 2.8 * 106 n 0.16 compositions.
n = 1050. Choose k = 17, P = 0, a25,17,0 = 1 610. We have [b25,170J = 30122136,

and n will be factored in about 2.9 * 107 = n 0.15 compositions.
n = 1060. Choose k = 18, P = 0, a30180 = 375. We have [b30180J = 258648746,

and n will be factored in about 2.6 * 108 n 014 compositions.
The examples show that the number of compositions while factoring n is smaller

than exp ilnn in inn. For instance, for n = 1060 we have 2.5 _ 108 = 0.00116 -

exp Vln n In In n . The examples indicate that our algorithm will be faster on integers
n > 1040 than the Morrison-Brillhart algorithm. Wunderlich [22] reports that the
Morrison-Brillhart algorithm for n = 1040 takes about 322 n0152 - 3.8 . 108 = n021
divisions of Qi, Qi = O(Vn), by small primes p. Meanwhile the above estimations
have been verified by a program running on the DEC-1091 in Frankfurt; see Section
5.

Table 5 demonstrates the performance of Method 1 of Stage 2. We choose the
pseudo-random function g: G(/\) -{ {1,. ., 16}

g(H) = [[b2mod(213 - 1)]167(213 - 1i) + 1

where (a, b, c) is the reduced form corresponding to H. We consider the method
with 6 distinct samples of exponents aj,...,a16: three samples with ai chosen at
random and three samples with regular ai, ai = ci+31 mod 270 i = 1,..., 16 with
c = 2, 3, 5. We have the recursion

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 309

TABLE 5

lotm 108 1010 1012 lo14

sample 1 29 84 252 698
16 47 99 281
71 176 535 1401
49 109 332 783

sample 2 28 87 237 605
19 56 130 241
53 171 531 1314
38 109 413 930

sample 3 28 88 219 606
20 49 117 266
57 184 469 1501
45 130 402 982

a = 2'+31mod270 19 61 176 504
9 29 98 269

44 121 319 1010
31 85 163 692

a = 3'+31mod270 31 65 211 585
20 28 102 380
57 168 477 1485
40 111 385 945

a = '+ 31mod270 28 79 217 819
20 56 152 388
59 174 480 1733
44 113 414 1013

with Ho E G (Az) chosen at random. We apply this recursion to the 50 largest
discriminants Av < - IOm with Av = 1 mod 4 for m = 8,10,12,14.

For every sample the 10 m-column records four values
1. the average period length,
2. the median of the period lengths,
3. the average number of recursion steps till search finds some k with 3] < k:

Hj = H,
4. the median of the number of recursion steps.
The particular favorable performance of ai = 2 31mod 270 and of ai =

31+ 31 mod 70 can be explained by the fact that the order of most class groups is even
and is a multiple of 3 for about half of the class groups. Despite this favorable
performance for random class groups the choice of ai = 21?31 mod 270 is unfavorable
for the factoring algorithm since in the particular situation of Stage 2 the class
numbers are free of small prime divisors.

Table 6 shows the performance of Method 2 in Stage 2 for the pseudo-random
function g: G(zA) - {1, . . .,4}

g(H) = L [b2 mod(213 - 1)] 47(213 - 1i) + 1

where (a, b, c) is the reduced form corresponding to H. We used ai = d', i = 3,4,
with constants d = 2, 3,.. ., 8. The recursion scheme is

310 C. P. SCHNORR AND H. W. LENSTRA, JR.

Hj+
Hi

j(3

if g (Hi) -< 2,

HiHl otherwise,
Ho E G(A\) is chosen at random.

For every d = 2,3,... ,8 and m - 8,... ,14 we applied this recursion to the 50
largest discriminants A - iotm with A = 1 mod 4. For every d and m the table
records four values:

1. the average period length,
2. the median of the period lengths,
3. the average number of recursion steps till search finds some k with 3j < k:

HjI= H,
4. the median of the number of recursion steps.

TABLE 6

base d 108 1010 o102 1014

2 21 63 178 684
12 42 112 289
51 158 395 1513
43 92 322 1099

3 28 116 231 783
17 53 86 555
63 219 503 1519
50 157 260 1118

4 24 76 185 780
15 41 83 277
48 165 360 1260
31 123 285 688

5 34 103 273 746
22 58 143 429
74 224 570 1613
50 161 357 1013

6 23 43 98 435
12 24 79 196
55 114 299 927
35 72 188 684

7 28 90 276 713
24 74 154 376
63 224 516 1533
51 159 386 925

8 26 76 209 763
13 47 129 445
53 144 391 1449
41 94 228 918

Acknowledgement. Several members of the Frankfurt working group participated
in implementing this algorithm. H. G. Franke produced Tables 1-3 and imple-
mented large integer arithmetic and an efficient composition algorithm in machine
language. J. Sattler produced Tables 5, 6 which compare Methods 1, 2 of Stage 2.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 311

Thanks are due to the computer centres of Frankfurt and Amsterdam university for
providing computing time on the DEC-1091 in Frankfurt and the CDC-Cyber in
Amsterdam. We also like to thank A. Odlyzko for the permission to include in this
paper Table 4 which is part of a larger statistic made at Bell Laboratories.

Fachbereich Mathematik
Universitat Frankfurt
6 Frankfurt am Main, West Germany

Mathematisch Instituut
Universiteit Amsterdam
1018 WB Amsterdam, The Netherlands

1. R. P. BRENT, "An improved Monte Carlo factorization algorithm," BIT, v. 20, 1980, pp. 176-184.
2. J. W. S. CASSELS, Rational Quadratic Forms, Academic Press, London, New York, 1978.
3. H. COHEN & H. W. LENSTRA, JR., Divisibility by Small Primes of Class; Numbers, Personal

communication, 1982.
4. J. D. DIxoN, "Asymptotically fast factorization of integers," Math. Comp., v. 36, 1981, pp.

255-260.
5. C. F. GAuss, Disquisitiones Arithmeticae, Leipzig, 1801: English transl. by A. A. Clarke, Yale

University Press, New Haven and London, 1966.
6. G. H. HARDY & E. M. WRIGHT, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ.

Press, Oxford, 1979.
7. D. E. KNUTH, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 2nd ed.,

Addison-Wesley, Reading, Mass., 1981.
8. P. G. LEJEUNE DIRICHLET & R. DEDEKIND, Vorlesungen uber Zahlentheorie, Braunschweig, 1893;

reprint, New York, 1968.
9. H. W. LENSTRA, JR., On the Calculation of Regulators and Class Numbers of Quadratic Fields,

Journees Arithmetiques 1980 (J. V. Armitage, Ed.), Cambridge Univ. Press, Oxford, 1982, pp. 123-150.
10. G. B. MATHEWS, Theory of numbers, 1892; Reprint, Chelsea, New York, 1962.
11. L. MONIER, Algorithmes de Factorisation d'Entiers, These d'informatique, Universite Paris Sud,

1980.
12. M. A. MORRISON & J. BRILLHART, "A method of factorization and the factorization of F7," Math.

Comp., v. 29, 1975, pp. 183-205.
13. J. M. POLLARD, "A Monte Carlo method for factorization," BIT, v. 15, 1975, pp. 331-334.
14. C. POMERANCE, "Analysis and comparison of some integer factoring algorithms," Computati6nal

Methods in Number Theory (R. Tijdemen and H. Lenstra, Eds.), Mathematical Centrum, Amsterdam,
1981.

15. R. L. RIVEST, A. SHAMIR & L. ADLEMAN, "A method for obtaining digital signatures and public key
cryptosystems," Comm. ACM, v. 21, 1978, pp. 120-126.

16. J. SATrTLER & C. P. SCHNORR, "Ein Effizienzvergleich der Faktorisierungsverfahren von Morrison-
Brillhart und Schroeppel," Computing, v. 30, 1983, pp. 91-110.

17. D. SHANKS, Class Number, A Theory of Factorization,and Genera, Proc. Sympos. Pure Math., vol. 20,
Amer. Math. Soc., Providence, R. I., 1971, pp. 415-440.

18. J. SATTLER & C. P. SCHNORR, Generating Random Walks in Groups, Preprint, Universitat Frankfurt,
1983; submitted for publication.

19. C. P. SCHNORR, "Refined analysis and improvements on some factoring algorithms," J. Algorithms,
v. 3, 1982, pp. 101-127.

20. C. P. SCHNORR & M. SEYSEN, An Improved Composition Algorithm, Preprint, Universitat Frankfurt,
1982; submitted for publication.

21. C. L. SIEGEL, "Uber die Klassenzahl quadratischer Zahlk6rper," Acta Arith., v. 1, 1936, pp. 83-86.
22. S. S. WAGSTAFF & M. C. WUNDERLICH, A Comparison of Two Factorization Methods, Unpublished

manuscript.
23. H. G. ZIMMER, Computational Problems, Methods, and Results in Algebraic Number Theory, Lecture

Notes in Math., Vol. 262, Springer, Berlin and New York, 1972.

	Cit r273_c277:

